Введение в криптографию
[an error occurred while processing this directive]

Шифры замены - часть 2


/p>

Так как множества , , , ..., попарно не пересекаются, то по каждому символу шифрованного сообщения можно однозначно определить, какому множеству он принадлежит, и, следовательно, какую букву открытого сообщения он заменяет. Поэтому расшифрование возможно и открытое сообщение определяется единственным образом.

Часто состоит из одного элемента. Например, в романе Ж. Верна ``Путешествие к центру Земли'' в руки профессора Лиденброка попадает пергамент с рукописью из знаков рунического письма. Каждое множество состоит из одного элемента. Элемент каждого множества выбирается из набора символов вида

(2)

В рассказе А. Конан Дойла ``Пляшущие человечки'' каждый символ изображает пляшущего человечка в самых различных позах

(3)

На первый взгляд кажется, что чем хитрее символы, тем труднее вскрыть сообщение, не имея ключа. Это, конечно, не так. Если каждому символу однозначно сопоставить какую-либо букву или число, то легко перейти к зашифрованному сообщению из букв или чисел. В романе Ж. Верна ``Путешествие к центру Земли'' каждый рунический знак был заменен на соответствующую букву немецкого языка, что облегчило восстановление открытого сообщения. С точки зрения криптографов использование различных сложных символов не усложняет шифра. Однако, если зашифрованное сообщение состоит из букв или цифр, то вскрывать такое сообщение удобнее.

Рассмотрим некоторые примеры шифров замены. Пусть каждое множество состоит из одной буквы. Например,

(4)

Такой шифр называется шифром простой однобуквенной замены. По ключу () удобно проводить зашифрование и расшифрование: при зашифровании каждая буква открытого текста заменяется на соответствующую букву из второй строки (а на г и т.д.) При расшифровании, наоборот, г заменяется на а и т.д. При шифровании и расшифровании надо помнить вторую строчку в (), то есть ключ.

Запомнить произвольный порядок букв алфавита достаточно сложно. Поэтому всегда пытались придумать какое-либо правило, по которому можно просто восстановить вторую строчку в ().




- Начало -  - Назад -  - Вперед -


[an error occurred while processing this directive]