Введение в криптографию
[an error occurred while processing this directive]

Многоалфавитные шифры замены с периодическим ключом


Рассмотрим 30-буквенный алфавит русского языка:

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЬЫЭЮЯ.

В этом алфавите отсутствуют буквы , Й и Ъ, что практически не ограничивает возможностей по составлению открытых сообщений на русском языке. В самом деле, замена буквы на букву Е, буквы Й - на букву И, а буквы Ъ - на букву Ь позволяет понять смысл открытого сообщения, написанного с использованием этого алфавита.

В алфавите любого естественного языка буквы следуют друг за другом в определенном порядке. Это дает возможность присвоить каждой букве алфавита ее естественный порядковый номер. Так, в приведенном алфавите букве А присваивается порядковый номер 1, букве О - порядковый номер 14, а букве Ы - порядковый номер 27. Если в открытом сообщении каждую букву заменить ее естественным порядковым номером в рассматриваемом алфавите, то преобразование числового сообщения в буквенное позволяет однозначно восстановить исходное открытое сообщение. Например, числовое сообщение 1 11 20 1 3 9 18 преобразуется в буквенное сообщение: АЛФАВИТ.

Дополним естественный порядок букв в алфавите. Будем считать, что за последней буквой алфавита следует его первая буква. Такой порядок букв достигается, если расположить их на окружности в естественном порядке по часовой стрелке. При таком расположении можно каждой из букв присвоить порядковый номер относительно любой буквы алфавита. Такой номер назовем относительным порядковым номером. Заметим, что если число букв в алфавите равно , то относительный порядковый номер данной буквы может принимать все значения от 0 до в зависимости от буквы, относительно которой он вычисляется. Для примера рассмотрим исходный 30-буквенный алфавит русского языка, расположенный на окружности (см. рис.).

В этом случае порядковый номер буквы А относительно буквы А равен 0, относительно буквы Я он уже равен 1 и так далее, относительно буквы Б порядковый номер А равен 29. Значения относительных порядковых номеров букв алфавита из букв совпадают со значениями всевозможных остатков от деления целых чисел на натуральное число . Убедитесь в том, что порядковый номер какой-либо буквы алфавита относительно другой буквы равен остатку от деления разности их естественных порядковых номеров на число букв в алфавите.




- Начало -  - Назад -  - Вперед -


[an error occurred while processing this directive]